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Abstract 

A novel procedure has been developed for locating 
heavy-atom positions in crystals of macromolecules. 
This method used genetic algorithms (GA's) to 
search for heavy-atom sites that are consistent with 
an observed difference Patterson function. The pro- 
cedure is straightforward to apply, space-group 
independent, and particularly powerful for cases 
involving non-crystallographic symmetry of multiple 
heavy atoms in the asymmetric unit. In this paper, 
we introduce how GA's are used for determining the 
heavy-atom positions and show how this method is 
more efficient than a sequential search. 

Introduction 

A crucial and often difficult step in the multiple 
isomorphous replacement method (MIR) is 
determining the heavy-atom positions needed for 
establishing an initial set of experimentally derived 
phases. The procedures most commonly used are 
direct inspection of a difference Patterson map or 
some search algorithm based upon vector superpo- 
sition (Buerger, 1970). A potential solution is 
achieved when a set of atom positions produce a 
group of self and cross vectors that account for the 
larger non-origin peaks observed in the difference 
Patterson function. These signal peak heights will be 
proportional to the scattering power of the heavy 
atoms while the experimental noise will be roughly 
proportional to the number of these scatterers 
(Terwilliger, Kim & Eisenberg, 1987). The difficulty 
in deconvoluting the difference Patterson occurs 
when there are large numbers of heavy atoms in the 
asymmetric unit. In this case, the signal relative to 
the origin peak height will decrease dramatically and 
a solution by direct inspection will not be possible. In 
these instances, a more sophisticated search tech- 
nique would be required. Genetic algorithms offer a 
new and more efficient approach for deconvoluting 
the Patterson function. 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

What are genetic algorithms? 

A genetic algorithm (GA) is a powerful search- 
optimization procedure that is based on the princi- 
ples of natural selection and genetics. The goal of the 
genetic algorithm is to find the maximum solutions(s) 
to multivariable functions spanning large search 
domains. GA's were first developed by John Holland 
and his students (Holland, 1975) to understand the 
processes of natural evolution. In his abstract work, 
he applied genetic mechanisms on binary strings of 
O's and l's which he called chromosomes. The process 
of evolution maintains that chromosomes that 
encode more viable characteristics survive and repro- 
duce more often than those that are less fit. By 
applying selective pressure to successive generations, 
Holland found that chromosomes with the most 
favorable fitness emerged. 

A schematic representation of the genetic 
algorithm is given in Fig. 1. As shown, the GA is 
composed of two unique modules: a genetic engine 
and an evaluation function. The role of the genetic 
engine is to perform gene manipulations on binary 
chromosomes. Although population genotypes are 
shaped by fitness criteria, the bit operations of the 
genetic engine are independent of the evaluation 
function. The evaluation function is responsible for 
decoding a chromosome into search parameters and 
returning a measure of performance with respect to 
the given problem. The evaluation function provides 
the link between the genetic engine, which performs 
the search optimization, and the problem to be 
solved, namely searching for heavy atoms in the 
asymmetric unit. 

The initial GA population consists of randomly 
constructed chromosomes. Each chromosome is con- 
verted to a functional form, and assigned a level of 
fitness by the evaluation function. The fitness levels 
are then used by the genetic engine to calculate 
mating probabilities for generating a new population 
or children. A roulette wheel selection process is a 
common method used by GA's for randomly 
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choosing a parent. The number of slots (or area) 
allocated to each parent on the roulette wheel is 
directly proportional to the individual's fitness level. 
A parent with a relatively large fitness score will have 
a higher probability of mating when the roulette 
wheel is randomly 'spun'. The new chromosomes, or 
children, are created by making copies of the 
parental chromosome and applying genetic mechan- 
isms, or bit operations. 

The two most important gene operations per- 
formed by the genetic engine are point mutation and 
crossing over. The purpose of point mutation is to 
introduce small but consistent variation in the gene 
pool and refine a good chromosome to an even 
higher fitness. Point mutations involve the random 
'flipping' of bits, that is changing 0 ==>1 or 1 =¢" 0, 
on a binary chromosome. The probability of a point 
mutation is controlled by a mutational-rate param- 
eter which is inversely related to size of the chromo- 
some and number of population. An example of 
point mutation is illustrated in Fig. 2. The high 
convergence rate of the GA is largely due to the 

Binary Chromosome .~ Heavy Atom Input Parameters 

L ) 

Genetic Engine 

Evaluation Function 

Buerger Mimmum Funcuon 

I , , I 
Fitness (Agreement with Patterson) 

Fig. 1. Flow chart  for  the genetic a lgori thm adapted  for  solving 
heavy-a tom positions. The  G A  generates a popula t ion  o f  
chromosomes  that are decoded into heavy-a tom input param- 
eters. The Pat terson vectors are then evaluated by a Buerger 
minimum function and the fitness score is passed back to the 
genetic engine. The  genetic engine then uses this informat ion  to 
construct  the next generat ion o f  ch romosomes  and a maximum 
solution will evolve reflecting a high agreement  with the 
difference Pat terson function. 

cross-over mechanism. Crossing over interchanges 
segments of chromosomes to form new children with 
mixed parental genotypes. The mechanism intro- 
duces large gene variation from old genetic building 
blocks and also proliferates those genes that give rise 
to high fitness. The cross over allows population 
members to accommodate for large evolutionary 
change, i.e. escaping the local minima. Fig. 3 illus- 
trates an example of a one-point and of a two-point 
cross-over event. As shown, the cross-over operator 
swaps a homologous region of parent 1 with a 
corresponding region in parent 2. The cross-over 
points are randomly determined and the rate is a 
specified parameter. 

The efficiency and effectiveness of the GA are 
heavily influenced by parameters such as mutation 
rate, cross-over rate, size of population and number 
of trials. Although optimal parameter values will 
depend on the particularities of the evaluation func- 
tion, a set of general parameters has been developed 
by Grefenstette (1987) that are problem independent 
and fairly robust. These parameters were used for 
our heavy-atom calculations and shown to work 
quite well. The approximate number of trials for a 
'generalized' GA to achieve convergence is the 
product of the population size, S, and the number of 
bits in the chromosome, N. 

Number of trials = S x N. 

To verify that the GA has converged to a maxi- 
mum solution, a number of experiments, E, are 
typically performed in parallel with different random 
seeds. This is analogous to setting up several 
Darwinian islands to ensure that independent 
populations do not fall into a local minima with 
respect to a particular random seed. The total 
number of trials is given by, therefore, 

Total number of trials = S × N × E. 

One Point Cross Over 

Parent l: 00110111011 ~ ChUd l: OOllOll lOll  

Parent 2 :01101011101  Child 2: 01101011101 

Old Chromosome Random Numbers New Chromosome 

0 1 0 1 0 0 0 .234 .444 .765 234 005 .765 676 0 1 0 1 1 0 0 

I 1001 10 .112 013 754 345 .769 .337 .975 1 1 001 10 

0 0 1 1 1 0 1 .001 766 486 002 323 .543 .324 1 0 1 0 1 0 1 

0 o I 0 0 1 1 .340 .004 769 .238 .987 .395 .344 0 1 1 0 0 1 1 

Fig. 2. Effect o f  point  mutat ion.  The  table shows four  7-bit 
chomosomes,  a list o f  r andom numbers,  and the resulting 
chromosome.  When the r andom number  is less than the 
mutat ional  f requency o f  0.006, as noted in bold-face type, the 
bit in the old chromosomes  is muta ted  in the new chromosome.  

Two Point Cross Over 

Parent 1: 010101 ~ 101 Child 1 : 010101 [ ' ~  101 

Parent2: Il l010111011 001 Child2 : 111010101011 001 

Fig. 3. Illustrates one-point  and two-point  cross-over events. The  
top par t  o f  the figure illustrates a one-point  cross-over event. 
The  children are produced by cutt ing the parental  ch romosome  
at the point  indicated by the ar row and the parental  bits in the 
box are exchanged.  A two-point  cross-over requires two cuts in 
the parental  chromosome.  The  shaded area in parent  1 is given 
to child 2 and similarly the shaded area o f  parent  2 is given to 
child 1. 
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The number of chromosomes in the population is 
related to the chromosome size as given by Grefen- 
stette (1987). 

S = exp[0.14 x (N + 4)]. 

For  a binary bit string of size N, there are T v 
possible combinations. The relative efficiency of the 
GA with respect to a sequential search is shown in 
Fig. 4. As illustrated, the GA is several magnitudes 
more efficient than a sequential search. 

A population histogram of a typical GA search is 
illustrated in Fig. 5 as a function of gene distribution 
and generations. The maximum solution correspond- 
ing to the best agreement with the Patterson function 
is indicated by an arrow. The early generations of the 
GA are spent randomly exploring search space. 
During this stage, it is important that an appropriate 
population size be used. If the population is too 
small, there will be inadequate sampling of search 
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Numbe r  o f  b i t s  in  ch romosome  

Fig. 4. Comparative semi-log plot of a sequential and GA search 
as a function of the number of bits in the chromosome. The 
estimated performance of the GA is conservative and the GA 
trials are shown with E= 1, 5 and 10 experiments. As illus- 
trated, the genetic algorithm is significantly more efficient than a 
sequential search for large search space. 

space. The more population members used, however, 
the more generations (or trials) will be required for 
convergence. It is interesting that there are many 
evolutionary dead ends corresponding to local 
maxima. Convergence is achieved when there is 
homogeneity in the population distribution as illus- 
trated by a sharp peak in the histogram function. 

Methods and results 

We have applied the genetic algorithm to solving the 
heavy-atom positions for a variety of test cases. As 
described above, there are two links between the 
genetic engine and the evaluation function: decoding 
the binary chromosome into useful parameters and a 
single number representing the fitness of  that 
chromosome based on those evaluation parameters. 
The most simple and straightforward method of 
decoding a binary string is to directly convert from a 
binary number to an integer. This integer can then be 
scaled to a particular cell length or some parameter 
range. Unfortunately, this encoding scheme has 
several disadvantages because all binary digits flip, 
that is change from 1==~0, when going from (2 N - 1) 
to 2 N where N is any integer. This phenomena is 
known as 'Hamming 's  Cliff' and can greatly inhibit 
the refinement of any parameter by point mutation 
or crossing over. A solution to this problem is to use 
gray-coded integers which have the property that any 
adjacent integer values differ by only one bit posi- 
tion. This makes a single point mutation more effect- 
ive in parameter refinement. Shown in Fig. 6 is an 
example of gray-encoded integers and an example of 
a six-parameter decoding scheme. 

A good fitness evaluation is the most difficult part 
of constructing any genetic algorithm. Again, the 
genetic engine is truly independent of the problem 
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Fig. 5. Population histogram of 
GA evolution as a function of 
generations and gene pool. The 
maximum solution is indicated 
by an arrow. This illustrates the 
evolutionary history of a typical 
GA run. The early generations 
of the GA are spent randomly 
exploring space. During the 
intermediate stages, several local 
maxima are explored which 
result in many evolutionary 
dead ends. Convergence is noted 
by a peak in the histogram func- 
tion which corresponds to a par- 
ticular genotype with a 
maximum solution. 
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and will seek to find the maxima of any function. 
Clearly, if the maximum value of the evaluation 
function does not correspond to the correct solution, 
the GA search will certainly fail. Deconvoluting the 
Patterson function requires an evaluation procedure 
to assess how well the position of a heavy atom or 
atoms agrees with the observed difference Patterson 
function. A true heavy-atom position will yield self 
and cross vectors corresponding to strong peaks in 
the Patterson function. In practice, the search for a 
heavy-atom positions is most effectively accom- 
plished by the vector superposition minimum func- 
tion as suggested by Buerger (1970). This is the 
evaluation function used in our test cases. Below we 
describe heavy-atom searches and show that GA's  
are useful and highly efficient tools for deconvoluting 
the Patterson function. 

Patterson calculation 

Unfortunately, the observed diffraction data 
required for MIR phasing, Fpn, are usually not 
published and consequently difficult to obtain. 
Therefore, to determine the utility of the GA for 

Integer Binary Gray Fractional 
'Coded Coded =Conversion 

16:1 
0 0000 0000 0.0000 
1 0001 0001 0.0625 
2 0010 0011 0.1250 
3 0011 0010 0.1875 
4 0100 0110 0.2500 
5 0101 0111 0.3125 
6 0110 0101 0.3750 
7 0111 0100 0.4375 
8 1000 1100 0.5000 
9 1001 1101 0.5625 
10 1010 1111 0.6250 
11 1011 1110 0.6875 
12 1100 1010 0.7500 
13 1101 1011 0.8125 
14 1110 1001 0.8750 
15 1111 1000 0.9375 

(a) 
Atom 1 Atom 2 

F I I 
1~1 1110 1 1 1 1  0011 0110 

1110 1011 1010 0010 0 1 ~  

14 11 I0 2 4 

I 
0101 Gray Encoded 

0110 Binary Encoded 

6 Integer 

0.8750 0.6875 0.6250 0.1250 0.2500 0.3750 Fractional Number 

Xl Yl Zl x2 Y2 z2 (Heavy Atom Coordinates) 

(b) 
Fig. 6. T h e  c o n v e r s i o n  o f  a s t r i ng  o f  b i ts  to  a f u n c t i o n a l  f o r m .  (a)  

is a table of integers, the equivalent binary and gray-coded 
representations, and a fractional conversion value. The frac- 
tional conversion number is simply the integer divided by 16. 
Note that adjacent integers have gray-encoded numbers that 
differ by a one-bit position. (b) illustrates how a 24-bit chromo- 
some is decoded into six fractional atomic coordinates using the 
gray-encoding scheme. 

solving heavy-atom sites, calculated diffraction data 
were used. In our efforts to simulate better experi- 
mental isomorphous replacement, the positions of 
heavy atoms were constructed by using coordinates 
of known water molecules from the first hydration 
shell and reassigning the scattering to that of an Hg 
atom. Structure factors were calculated with d spac- 
ing greater than 6 A and only 80% of the diffraction 
data was used. Moreover, the magnitudes of the 
structure factors were randomly varied to simulate 
errors in the measurements (Rsym=8-12%).  A 
difference Patterson function was calculated and 
used in the search procedure. 

The single-site search 

A series of calculations were performed using the 
GA for finding a single heavy-atom site. A 21-bit 
chromosome (3 parameters × 7 bits) was used to 
sample an interval of 1/128 of a cell edge. In cases 
where the Patterson space group had an invarient 
translation, a 14-bit chromosome was used appro- 
priately. As shown in Fig. 4, the range of projected 
evaluations necessary for convergence was approxi- 
mately 150-1000 and 1500-3000 for a 14- and 21-bit 
chromosome, respectively. The upper projected limits 
are very conservative. The evaluation ranges 
observed for the GA single heavy-atom searches are 
shown in Table 1 for ten single cases involving 
calculated and noisy data. As illustrated, the GA is 
2-3 orders of magnitude faster than a sequential 
search. 

The latter three cases in Table 1 provided an 
opportunity to use actual diffraction data. The 
crystal structure of interleukin-la was solved by 
MIR and refined to 1.7/~ (Lewis, unpublished 
work). The protein crystallized in space group 
P2~2121 with cell parameters a = 43.3, b = 57.0 and c 
= 64.1 ]~. Three mercury compounds (ethyl mercury 
chloride, mercury potassium iodide and phenyl mer- 
cury acetate) provided single-site isomorphous 
derivatives. These experimental observations enabled 
us to explore more rigorously the benefits of the GA 
on real diffraction data. An effective sampling of 
better than 0.2/k using a 21-bit chromosome (3 
parameters × 7 bits) was used. In all three instances 
the GA found the single-site solution in a fraction of 
the total search space. 

The GA single-site search can be easily modified to 
determine multiple heavy-atom positions in a singu- 
lar fashion. The evaluation function is slightly 
modified to accommodate for the self and cross 
vectors created from previously determined heavy- 
atom positions. To ensure that the previous sites do 
not overlap with the test site, a distance check is 
performed. This eliminates the trivial solution of two 
atoms having the same coordinates. This method is 
repeated, or 'boot strapped', to build up N sites until 



GEOFFREY CHANG A N D  MITCHELL LEWIS 671 

Table 1. Single-site search results for 11 proteins 

The actual search space was the entire unit cell. Diffraction data corresponding to the heavy atoms are described in the text. Noise was 
added to the structure amplitudes to simulate experimental data more realistically. The Rsym for the noisy data was between 8 and 12%. 
The cases involving IL-lt~ involved real diffraction data. The last column is the range of evaluations that were necessary to obtain 
convergence. The range is based upon running a number of independent experiments with different random seeds. A minimum of five 
experiments were run for each protein. In all instances, the GA was able to find the correct solution but the number of trials varied. A 
sequential search at the same sampling interval requires 2 zv, where N is the number of bits in the chromosome. 

Chromosome Approx. range of 
Protein Patterson Perfect data Noisy data length evaluations for 
(PDB file)* Space group symmetry iso-residual iso-residual (Bits) convergence 
IALC P2~2~2 P m m m  0.213 0.231 21 1500-3000 
1 M BW P6 P6 /m 0.176 0.208 14 150- i 000 
1SGT C222t C m m m  0.216 0.246 21 1500-3000 
2APR P212t21 P m m m  0.178 0.205 21 1500-3000 
2FXB C2 C2/m 0.250 0.271 14 150-1000 
2LHM P2~2~2~ P m m m  0.162 0.193 21 1500-3000 
4FD 1 P412j 2 P 4 / m m m  0.236 0.267 21 1500-3000 
4RXN R3 R3 0.303 0.311 14 150-1000 
5CPA P2L P2/m 0.112 0.155 14 150-1000 
6LYZ P4~2D2 P 4 / m m m  0.260 0.279 2 i i 500-3000 
1 L- I a P2~2~2~ Pmram - 0.230 21 1500-3000 
HgCHaCI 
IL-I a P212121 P m m m  - 0.190 21 1500-3000 
HgKCI 
IL-la P2t2~2~ P m m m  - 0.220 21 1500-3000 
Phe-Hg-COCH3 

* Bernstein e t  al.  ( 1 9 7 7 ) .  

Table 2. Comparison of different two-site search methods 

The actual search space was the entire unit cell. The isomorphous residuals for a two-site derivative are listed corresponding to the 
perfect and noisy diffraction data described in Fig. 1. As above, the I L - l a  involved real diffraction data. The last two columns are the 
number of evaluations that were performed to obtain convergence. The range is based upon running a number of independent 
experiments with different random seeds. A minimum of five experiments were run for each protein. A sequential search at the same 
sampling interval requires 235 or 242 evaluations. The number of evaluations that were actually required to achieve convergence is a mere 
fraction of the total search space. 

Approx. range of Approx. range of 
Chromosome evaluation for evaluation for 

Protein Perfect data Noisy data length 'boot strap' simultaneous two- 
(PDB file)* iso-residual iso-residual (Bits) convergence site convergence 
1ALC 0.307 0.282 42 500-5000 20000-40000 
1MBW 0.242 0.253 35 300-2000 8000-20000 
1SGT 0.283 0.285 42 500-5000 2 ~  
2APR 0.235 0.248 42 500-5000 20000-40000 
2FXB 0.337 0.354 35 30(02000 8000-20000 
2HLM 0.209 0.103 42 500-5000 20000-40000 
4FD 1 0.306 0.306 42 500-5000 20000-40000 
4RXN 0.378 0.374 35 500-5000 2 ~ 0 0  
5CPA 0. i 56 0.157 35 300-2000 8000-20000 
6LYZ 0.344 0.343 42 500-5000 2 0 ~ 0  
IL-I a - 0.280 42 500-5000 20(0)0-40000 
PtNH4NO3 

* Bernstein e t  al.  (1977). 

weak self and cross vectors are encountered. At this 
point, the Patterson can be considered exhausted. 
The results of applying the 'boot-strap' technique for 
solving a second heavy-atom site are shown in Table 
2. The case of the two-site platinum derivative 
(PtNHaNO3) of interleukin-la involved real diffrac- 
tion data. As a second example, the boot-strap 
approach was tested using a mercury derivative of 
glutathione peroxidase that had eight heavy-atom 
positions in the asymmetric unit (Ladenstein et al., 
1979). Again, all eight heavy atoms were found. 

The 'boot-strap' approach is efficient because 
heavy atoms are found in a singular fashion. 
Although the systematic search is still plausible, the 
GA is still 1-2 orders of magnitude faster. For N 
heavy atoms, the increase in efficiency is to the 
power of N. The major disadvantage of the 'boot- 
strap' approach arises when there are errors in pre- 
viously determined heavy-atom positions. Clearly, 
when initial sites are falsely chosen, all subsequential 
searches will naturally result in a consistent set of 
incorrectly placed heavy atoms. The fault for this 
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erroneous solution is not due to the genetic engine 
but rather the evaluation function. For multiple 
heavy-atom caes, there are a large number of peaks 
from which strong vectors can be constructed. The 
inevitable case of choosing a strong cross vector for a 
single-site self vector is entirely possible in the 
Buerger minimum function because the initial search 
is ignorant of difference Patterson peaks contributed 
by other heavy-atom positions. 

Our results illustrate that GA's can be used as an 
alternative to the sequential procedures. The genetic 
algorithm simply provides an alternate method of 
searching the asymmetric unit that is less laborious 
and time consuming. As with all search routines, the 
ability to solve the Patterson function is directly 
related to the quality of the data and the occupancy 
of the heavy atom. When the heavy-atom derivatives 
are of poor quality and the information is buried in 
the noise it is not possible for any search procedure 
to unambiguously deconvolute the difference 
Patterson. 

A simultaneous multiple-site search 

The nemesis of the 'boot-strap' approach (choosing 
incorrect initial sites) can be greatly diminished by 
finding all sites simultaneously. This is accomplished 
by incorporating all search parameters (atomic co- 
ordinates) into the binary genome. A collision con- 
straint ensures that the maximum number of signal 
peaks in the difference Patterson are explored. The 
multiple-site search is slower than the boot-strap 
approach because a larger bit string requires more 
population and generations to adequately sample the 
search space. The obvious advantage of the multiple- 
site search is that false heavy-atom solution sets are 
less likely to occur. The multiple-site search is still far 
more efficient than the equivalent sequential search. 
For example, let us consider a simultaneous three- 
site search (three coordinates per site) with a grid 
sampling of 1/128 of a cell edge. A complete sequen- 
tial search will require a total of (1283)  3 = 9.22 × 10 TM 

trials. The GA chromosome of a length of 63 (3 x 3 
x 7) bits can conservatively find the correct solution 

in under 1.5 x 106 trials (Fig. 4). This is an amazing 
6.15 × 1012 times more efficient than a sequential 
search! The result of test cases involving multiple-site 
searches are shown in Table 2. 

While the procedure described above is general 
and useful for finding multiple heavy-atom sites, the 
efficiency for monoclinic space groups can be greatly 
improved by taking advantage of Harker sections. 
The method begins by making a list of potential 
single-site (self-vector) solutions corresponding to 
peaks on the Harker section. In this search, the 
chromosome will encode: (1) integers which are used 
as indices pointing to potential heavy-atom positions 
in this single-site list and (2) floating translational 

components. The number of parameters will natur- 
ally depend on the number of heavy atoms being 
searched and also the space group. The role of the 
GA is to find those indices and floating translations 
that have good cross-vector agreement with the 
difference Patterson. The 'pointers to lists' method 
has been shown to greatly reduce the size of the 
chromosome and increase search speed considerably. 

The 'pointers to lists' method can be easily illus- 
trated in space group C2. The Harker section of this 
monoclinic space group provides information as to 
the x and z coordinates of all heavy atoms. The self 
vectors for any heavy-atom position will have a 
Patterson vector (U = 2x, V = 0, W = 2z). A pre- 
computed list of potential self-vector solutions was 
accomplished by systematically peak picking the 
V= 0 section for all potential single-site solutions. 
This list is sorted by peak height and the stronger 
peaks are saved. For N heavy-atom positions, the 
genetic engine is responsible for passing N integers 
and ( N - 1 )  floating parameters which are used to 
calculate the cross-vector solutions. The goal of the 
genetic algorithm is to find those indices which give 
rise to good cross-vector solutions. The 'pointers to 
list' method was applied to a number of two-site 
monoclinic Patterson functions. The number of trials 
required to find the correct solution ranged from 50 
to 300 trials. The procedure was then repeated for 
three and four heavy atoms. Again, as in all cases, 
the GA was able to find all the heavy-atom sites. 

Using non-crystallographic symmetry  

A powerful feature of the GA is its ability to 
simultaneously refine multiple parameters. The GA 
is therefore ideally suited for those heavy-atom 
searches involving a non-crystallographic operator 
relating heavy-atom positions. For example, when 
molecules and presumably heavy atoms are related 
by non-crystallographic symmetry, there exists a 
simple transformation that allows one to compute 
the position of an atom at x' if one knows the 
position x, 

x" = Cx + d. (1) 

In the above equation, C is a rotation matrix and 
d is a translation vector. When the non-crystallogra- 
phic symmetry operator is accurately known the 
problem is trivial. In practice, however, the non- 
crystallographic operators C and d may only be 
known approximately. This will make a search diffi- 
cult unless the rotation and translation operators are 
refined simultaneously while searching for the heavy- 
atom position x'. Below we provide two examples of 
how non-crystallographic symmetry may be incorpo- 
rated in the heavy-atom search. 

Glutathione peroxidase (1GP1, Ladenstein et al., 
1979) is a tetrameric selenoenzyme protein that crys- 
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tallized in space group C2 with a dimer in the 
asymmetric unit. A self-rotation function of the K = 
180 ° section revealed two large peaks at ~o = 50 (10) °, 

= 9 0  ° and q~=150(10) °, ~0=90 ° implying 222 
symmetry with a twofold axis coincident with the 
crystallographic twofold. The absence of a pseudo- 
origin peak in the native Patterson map also sug- 
gested that there was a dimer in the asymmetric unit. 
In this crystal, the monomers in the asymmetric unit 
are related by a simple rotational operator which 
intersects the origin, i.e. d = (0,0,0). The ambiguity in 
the cone angle, dq~ = _ 10 °, presents a difficulty in 
generating the exact non-crystallographic rela- 
tionship relating the search atom and its non- 
crystallographic kin. The cone angle is, therefore, 
incorporated into the chromosome as an additional 
parameter. The search range of the A~0 was confined 
to [ - 1 0  °, 10 °] from the approximate angle of ~p = 
50 ° and the sampling was 0.1 °. In less than 10 000 
evaluations, the genetic algorithm located the posi- 
tion of the two Se atoms and determined the direc- 
tion of the twofold axis to be ~o = 48.7 °. 

A second, and more complicated, example is based 
upon the crystal structure of the unliganded form of 
phosphofructokinase (2PFK, Rypniewski & Evans, 
1989). Although the original protein coordinates 
were reported by Rypniewski & Evans in space 
group C2~, the equivalent space group C2 will suffice 
for explanation. The non-crystallographic symmetry 
is considerably more complicated than that of gluta- 
thione peroxidase. The x = 180 ° section of the self- 
rotation function showed several peaks that were 
perpendicular to the unique axis (b axis) suggesting 
that a molecular twofold axis is parallel to the 
crystallographic twofold. The strongest peak normal 
to the crystallographic twofold axis is at ~0 = 80 (10) ° 
and ~0 = 170 (10) ° corresponds to the non-crystallo- 
graphic symmetry that relates the two tetramers. 
Weaker peaks were observed at ~0 = 60, 150, 100 and 
190 ° suggesting that dimers were related by non- 

Fig. 7. Packing ar rangement  o f  molecules in the P F K  cell. There  
are two tetramers in the unit cell that  are not  related by 
crystal lographic symmetry.  One te t ramer  is centered at the 
origin and the other  is centered at (0.0, 0.31, 0.5). There  are 
twofold axes that  relate the monomers  in each tetramer.  There  
is also a twofold axis that  relates the two tetramers.  

crystallographic symmetry. The lack of a pseudo- 
origin peak in the native Patterson function further 
enforced the notion of a tetramer in the asymmetric 
unit. Fig. 7 illustrates the packing of the phospho- 
fructokinase tetramers sitting on different crystallo- 
graphic dyad axes. Each asymmetric unit contains 
two half-tetramers. The four heavy atoms, one from 
each monomer, are related by non-crystallographic 
symmetry and can be described in terms of the two 
transformations, 

x2 = Bxl. (2) 

An atom at Xl is related to an atom at x2 where B 
is a rotation matrix that is calculated from spherical 
polar angles ~o1=100(10) °, ~ = 9 0  ° and K = 1 8 0  ° . 
The cone angle, Aq~l, with a range of [ -  10, 10 °] is a 
GA parameter. To relate the two dimers within the 
asymmetric unit, a second transformation is needed 
that has a relative translational component, Ay, 

x 3 = C x l + d  and x 4 = C x 2 + d .  (3) 

The matrix C is calculated from the polar angles 
~02 = 80 (10) °, ~ = 90 °, and r = 180 ° and the trans- 
lation vector will have the form d = (0.0, Ay, 0.5) 
where ~02 and Ay are GA parameters with ranges a~o2 
= [ -10° ,10  °] and Ay = [0.0,0.75]. The 1/2 in z is a 
centering operation. Again, if the parameters (A~0~, 
A~o2, Ay) are known precisely, the problem is trivial. 
Because of ambiguities, the GA search will require 
six parameters to fully specify the four heavy posi- 
tions in the symmetric unit: three positions for x~, 
two rotation angles (A~ol, A~02) and one relative 
translation (ay). An evalulation function was written 
to solve the problem by encoding the six 6-bit 
parameters (xl; A~o~, d~o2, dy) into a 36-bit chromo- 
some. The first 18 bits encode the heavy-atom site, 
the next 12 bits represent the angles A~0~ and d~02, 
and the final six bits encode the y component. Again 
we assumed that the values from the self-rotation 
function were sufficiently well known, so we could 
restrict the angular search. The GA was able to find 
the positions of all heavy atoms with a y translation 
of 0.31. This example illustrates the power of the GA 
and its ability to search and optimize several param- 
eters simultaneously. 

Concluding remarks 

Finding heavy atoms in difference Patterson func- 
tions can often be a difficult and laborious task. We 
have demonstrated that genetic algorithms are 
ideally suited for finding heavy-atom positions that 
occur as single sites, multiple sites and sites related 
by non-crystallographic symmetry. In all cases the 
GA search procedure was able to find the correct 
solution to the Patterson with an efficiency far 
greater than that of a sequential site search. The 
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limitations of the genetic algorithm depend only on 
the ability of the evaluation routine to make the 
correct solution the maximum solution. Terwilliger 
et al. (1987) referenced a samarium derivative in 
t-RNA that had vectors in the Patterson with 
negative values. Clearly, any vector superposition 
routine would fail to deconvolute this Patterson in 
this instance. The real advantage of the GA 
approach is that evaluation routines can be easily 
tailored to individual problems. In this paper, we 
have showed how GA's can be successfully applied 
to a variety of heavy-atom searches. The genetic 
algorithm is a novel procedure for finding the posi- 
tions of heavy atoms in the Patterson map. It is 
similar in philosophy to other programs, such as 
H A S S P  (Terwilliger et  al., 1987), but is radically 
different in its search procedure. The utility of the 
GA approach is twofold: (1) the evaluation functions 
can be readily modified to incorporate additional 
information and (2) procedure is more robust than 
the conventional heavy-atom search technique in 
that many parameters can be varied simultaneously. 

The genetic algorithms described in this paper may 
be obtained from the authors. This work was sup- 
ported by grants NIH GM 44617, ARO DAAL-G- 
0173, and the Molecular Biophysics Training Grant 
2-T32-GM082745. 
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